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Insect mutualisms are essential for reproduction of many

plants, protection of plants and other insects, and provisioning

of nutrients for insects. Disruption of these mutualisms by

global change can have important implications for ecosystem

processes. Here, we assess the general effects of global

change on insect mutualisms, including the possible impacts

on mutualistic networks. We find that the effects of global

change on mutualisms are extremely variable, making broad

patterns difficult to detect. We require studies focusing on

changes in cost-benefit ratios, effects of partner dependency,

and degree of specialization to further understand how global

change will influence insect mutualism dynamics. We propose

that rapid coevolution is one avenue by which mutualists can

ameliorate the effects of global change.
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Introduction
Mutualism is a key outcome of many species interactions

that provide the energy, nutrients, and services for eco-

systems to function and persist. These interactions span a

wide range of associations from highly specialized, pair-

wise, obligate interactions to large, diffuse networks in

which many species interact to varying degrees [1].

Because of the importance of the many mutualisms

involving insects, it is critical to assess how these inter-

actions are impacted by anthropogenic disturbances

because entomofaunal and floral composition are chang-

ing at alarmingly fast rates as compared to natural cycles
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[2�,3]. These human-induced alterations are forcing

mutualisms to respond rapidly to large-scale global

changes. A major challenge of global change ecology is

to synthesize the effects of different types of disturbance

on mutualisms.

In this review, we begin by briefly summarizing the most

recent progress on how global change can affect defense,

pollination, and dispersal mutualisms (Table 1). Because

mutualisms commonly involve complex communities, we

next explore how mutualistic network structure and

dynamics can be affected by global change, specifically

due to agricultural intensification, fire, and invasion.

Against this backdrop, we conclude by discussing the

characteristics of mutualisms that may help us predict

insect responses to global change.

Diverse effects of global change on insect
mutualisms
Global warming can have disparate effects on insect

mutualisms depending on the geographic location and

degree of warming as well as the mutualists’ tolerances

and temperature optima. For instance, mutualists can

experience negative effects when temperatures exceed

the thermal tolerance of at least one of the partners (but

see Ref. [4] for a review on insect thermal tolerance).

Some negative outcomes of warming include disruption

of defensive mutualisms between aphids and ants [5], and

potential mutualism abandonment in aphid-bacteria sym-

bioses (reviewed in Refs. [6��,7�,8]). In contrast, positive

effects of warming on insect mutualism can occur when

temperatures approach the physiological optimum of the

insect. Positive effects of warming have occurred in the

defensive mutualism between ghost ants and mealybugs

where ghost ants become more active and better defend

their partners at higher temperatures [9]. Interestingly, all

the above examples involve phloem-feeding hemipter-

ans, emphasizing that there can be variable effects of

global change even within insect groups with similar life

habits.

Part of the reason that insect mutualisms vary widely in

response is because multiple disturbances can covary,

while at the same time, insects can also be indirectly

affected by responses in other trophic levels. For insect-

plant mutualisms in particular, the response of plants to

global change will influence their associated insects. For

example, two disturbances that can covary with warming
www.sciencedirect.com
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Table 1

Types of insect mutualisms and anthropogenic disturbances considered in this review (papers from 2017–2020). The type of mutualism,

dependency, and degree of generalization as considered from the insects’ perspective. This is not a comprehensive list of mutualisms

involving insects

Type of mutualism Partners Dependency Generalization Disturbances considered Ref.

Defensive

Ant-Hemiptera Facultative Mostly generalist

Warming [5,9,29�]
Invasion [9]

Habitat alteration [28]

Hemiptera-bacteria Obligate or facultative Mostly specialist Warming [7�,8]

Nutritional

Pollination Obligate or facultative

Mostly generalist;

brood-pollination

is mostly specialist

Drought [12]

Fire [40–42]

Temporal mismatch [15,16�,
17–20,34]

Spatial mismatch [22,23,24�,34]
Invasion [21,44�,45–47]
Habitat alteration [36,37,39��,43]
Agricultural intensification [33,35�]

Myrmecochory Facultative Mostly generalist Drought [11]

Beetle-slime mold Unknown Specialist or generalist Drought [49]

Ant-plants bearing EFNa Facultative Generalist Elevated CO2 [14]

Insect-bacteria Obligate or facultative Specialist or generalist Warming [6��]

a EFN = extrafloral nectaries.
and directly affect plant fitness are changes in water

availability and increases in atmospheric carbon dioxide

(CO2). Drought negatively affects plants, causing

decreases in nectar production or quality [10] which,

in turn, can reduce pollinator visitation, seed dispersal,

and plant fitness [11,12]. In contrast, increased atmo-

spheric CO2 can enhance plant growth [13], and can lead

to increased nectar production [10]. However, elevated

CO2 does not always translate into increased benefits for

insect mutualists. For instance, elevated CO2 may neg-

atively impact ant protection and pollination mutualisms

by reducing nectar quality [10]. Furthermore, elevated

CO2 may alter the timing of nectar production [14]. If

the time shift in production of mutualistic commodities

is large, this may cause temporal mismatches between

mutualists. Thus, elevated CO2 may be another cause of

potential temporal mismatches between mutualists in

addition to changes in temperature and snowmelt [15].

That said, the evidence for global change causing

phenological mismatches between partners involved in

pollination mutualisms is weak, as most studies have

demonstrated little overall support for this prediction

([16�,17,18], but see Refs. [19,15]). Some authors

have suggested that phenological mismatches may be

unlikely because of the long evolutionary history of

synchrony in the cues used by pollinators and plants

[16�,20]; however, it remains to be tested if this is also

the case for potential phenological mismatches driven by

elevated CO2.

In response to warming, drought, and habitat alteration,

many species are changing their range to track suitable

habitats, which could result in geographic mismatches
www.sciencedirect.com 
between partners or disruption of the native mutualist

community [e.g., Ref. 21]. The individual responses of

the partner species will determine how range shifts influ-

ence mutualism persistence. When mutualists change

their ranges in different ways, mutualism breakdown will

occur if a mutualist partner is lost or cannot form new

interactions. However, if partner species shift ranges in

the same way or if one species can facilitate range

expansion of its partner [22] (Figure 1a), the mutualism

may persist as the ranges expand or contract across the

landscape. Alternatively, if the partners fail to track each

other (Figure 1b,c), insect mutualists can adopt new

partners, but these new partners may be of lower quality

[23,24�]�. Changes in range are expected to be accompa-

nied by adaptation [25]; thus, the effect of range changes

on mutualisms will depend not only on the immediate

ecological responses, but also on whether mutualist part-

ners adapt in parallel (Figure 1). We predict that locally

adapted species may be more strongly impacted by

changes in range and that changes in community context

between locations will determine the likelihood of mutu-

alism persistence following range shifts or expansions.

We also need to consider that most, if not all, mutualisms

are context-dependent [26], and as such, the effect of

global change on insect mutualisms is dependent upon

the response of the entire community. For instance,

global change could result in decreased natural enemy

pressure in ant-herbivore defensive mutualisms because

higher trophic levels can suffer more negatively from

global environmental changes than lower trophic levels

[27]. For instance, disturbed habitats with less forest

cover have been shown to have fewer parasitoids [28]
Current Opinion in Insect Science 2021, 47:46–52
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Hypothetical responses by a pair of interacting mutualists adapting to global change. (a) Parallel responses to global change factors may keep the

mutualism intact; however, (b) different magnitudes or (c) directions of response may lead to range or trait incongruences that decrease the

efficacy of the mutualism. For example, in (a) shifts in the phenology of plants and pollinators in parallel can allow for the mutualism to persist. The

changes in parallel could occur when the mutualists use similar environmental cues for their phenology, or when mutualists are able to coevolve

rapidly or show plasticity in response to changes in their partners. In contrast, the mutualism might be threatened if, for example, a mutualistic

partner changes its range, whereas the other partner does not respond (b). Additionally, mutualisms might be threatened if changes in each

partner are in different directions, for example, when increases in temperature reaches the insect optimum but is detrimental for its symbiont (c).

In cases b and c, mutualisms could persist only if mutualists can form interactions with other partners.
and increased temperatures resulted in fewer predators in

a subalpine habitat [29�]. These studies suggest that the

benefits of defensive mutualisms could decrease as less

protection may be needed, potentially leading to mutu-

alism breakdown. Additionally, the overall community

composition and structure can have important implica-

tions for mutualism persistence (e.g. Refs. [30,31] making

it necessary to assess how mutualist networks will be

affected by global change.

Effect of global change on mutualistic
networks
Accumulating evidence shows that complex, multi-

species mutualisms are buffered from disturbances. At

least part of this resilience is derived from species-rich

mutualistic communities having more functional redun-

dancy of partners. Recent work shows that increasing

species richness and functional redundancy of experi-

mental mutualist communities enhances mutualism

persistence in the presence of exploitative species

[32��]. Functional redundancy among mutualist partners

within networks may also increase network stability in the

face of other ecological stressors. For example, pollinators

may survive disturbance if they can use multiple host

plant species (e.g. Refs. [33,34,35�,36]). However, distur-

bance can decrease species richness (e.g. Ref. [37]) and

increase asymmetry of networks [38] which, in turn, are

predicted to reduce mutualism stability particularly when

highly connected species are lost from the network (e.g.

Ref. [32��]). In this case, coevolution of mutualistic part-

ners can contribute to network stability through rewiring
Current Opinion in Insect Science 2021, 47:46–52 
of the interactions after species extinctions [39��], sug-

gesting that network plasticity may help to buffer mutu-

alisms against disturbance.

The resilience of mutualistic networks, however, likely

has limits and catastrophic events such as intense, fre-

quent fires could have strong effects on mutualistic net-

work structure. Fire frequency has been correlated with

reduced pollinator diversity and high turnover rates in

burned sites [40], and fire can cause changes in pollinator

community composition [41]. Additionally, a post-fire

assessment of floral visitor networks found that interac-

tion strengths were stronger and more specialized in

refuge areas [42], showing that flower-rich refuge areas

can shelter networks from species extinction. Thus, ref-

uge sites with high mutualist diversity may be pivotal to

the persistence of networks in highly disturbed sites as

they could reduce species extinction.

Although species loss is a key predicted outcome of global

change, we also need to consider how mutualistic net-

works respond to the addition of novel species. Mutual-

istic networks are increasingly being invaded by alien

species, but this seems to have a limited effect on network

connectance, or the proportion of potential realized inter-

actions among species. Because connectance is positively

associated with the extinction threshold and species

persistence [43], this suggests that alien species may

not impact network stability. For example, although alien

floral visitors have been shown to interact with more

plants, native floral visitors have higher partner fidelity
www.sciencedirect.com
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that could increase plant benefits, suggesting that native

pollination networks may be buffered from the negative

effects of invasion [44�]. Supporting this idea, some

pollination networks have been shown to be stable

despite the presence of alien pollinators [45,46]. Thus,

invaders are not expected to completely supplant native

pollinators, but the emerging patterns suggest that non-

native species of plants and pollinators are increasingly

becoming integrated into existing pollinator networks

[47].

Although empirical data suggest that networks are gen-

erally resilient to disturbance and the introduction of new

species, the question remains whether these complex

mutualistic communities will continue to persist as global

change escalates. Theory suggests that ‘tipping points’

and threshold responses could cause sudden, catastrophic

changes in networks, and that these tipping points may be

difficult to predict until they are already underway [48].

Furthermore, some types of mutualistic networks may be

more vulnerable to collapse, particularly those involving

specialized mutualisms that are more sensitive to distur-

bance. For instance, highly specialized beetle-slime mold

spore dispersal networks may be more susceptible to

extinction because erratic rainfall events threaten the

supply of the slime mold spores on which the beetles

feed [49]. Together, existing data suggest that while

mutualistic networks may be resilient to the negative

effects of global change, these networks can reach tipping

points as global change proceeds, potentially leading to

their collapse.

The future of global change for insect
mutualists
Recent work underscores that insect mutualisms experi-

ence a wide range of potential effects caused by global

change, making it difficult to provide general predictions

across all mutualism types. This review also highlights

that the effects of global change, either positive or nega-

tive, are going to be highly context-dependent and sys-

tem-specific. This is an important point because it means

that applying a broad statement about the effects of global

change on insect mutualisms is not an appropriate avenue

of discourse when planning for mitigation of the negative

effects. Instead, what is needed are data specific to the

particular insect mutualism under investigation. With this

caveat in mind, we discuss some features of mutualisms

that are likely to influence the response or magnitude of

effect of global change.

Costs and benefits

Mutualistic outcomes are determined by the benefits

surpassing the costs of providing a commodity in return.

If the benefits increase with global change, for instance

when plants are able to produce more rewards, then the

mutualism may be reinforced. Alternatively, a decrease in

benefits can lead to mutualism abandonment. For
www.sciencedirect.com 
example, if disturbance reduces natural enemy abun-

dance, this may lower the benefits of protection and

increase the cost of defensive mutualisms. In some cases,

a mutualist might be so limited by the mutualistic com-

modity that any reduction in the benefits received can

result in an inability to respond to other environmental

factors [50]. Few studies have measured the costs and

benefits of mutualisms involving insects, especially with a

focus on global change (but see Refs. [5] and [24�]).
Although measuring benefits and costs in natural systems

can be difficult, knowing how mutualistic traits might

evolve or change in response to environmental conditions

will be instrumental in predicting the effects of global

change on mutualisms.

Partner dependency

The degree of partner dependency will likely determine

the strength of species responses to disturbances. On one

end of the dependency spectrum, strict obligate mutu-

alists depend entirely on one another for survival and

reproduction. As such, obligate mutualisms may be

threatened by global change if mutualists cannot track

the responses of their partners. Consequently, the main-

tenance of these mutualisms might depend on plastic

responses or rapid adaptation of the partner with the

shortest generation time. In instances in which the mutu-

alists cannot respond quickly, we predict that local or

global extinctions will occur (Figure 1b and c). Alterna-

tively, in the cases in which a partner obligately lives

within or on its mutualist, the symbiosis could facilitate

simultaneous range or phenological shifts without a need

for adaptation. In contrast to highly dependent mutual-

isms, facultative mutualists do not require the interaction

for their survival/reproduction. If partners become extinct

due to global change, facultative mutualists could obtain

resources or services from other sources. Thus, facultative

mutualisms should be more resilient to global change

than obligate mutualisms.

Specialization level

Generalists are arguably favored after disturbance

because they might be better able to use the narrow

range of available resources or form new partnerships

(e.g. Refs. [51�,52,35�]). In this sense, an obligate but

generalized mutualism might be resilient to breakdown

and extinction if alternative partners are available. In

contrast, when mutualisms are so specialized that the

interaction requires specific evolved traits, we expect

increased mutualism abandonment or extinction on short

timescales. On longer timeframes, specialized obligate

mutualists might evolve traits that help partners respond

in similar ways (e.g. Ref. [20]), and they may be better

able to evolutionarily track each other’s responses

(Figure 1a). These predictions do not likely apply broadly

to all types of global change, especially when a distur-

bance can affect the partners in disparate ways (e.g.

Ref. [6��]). Disturbances that can have asymmetrically
Current Opinion in Insect Science 2021, 47:46–52
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negative effects on at least one partner may potentially

lead to local extinctions (Figure 1c). Thus, being a

specialized, obligate mutualist should be a major detri-

ment to mutualism persistence with global change.

Coevolution

A key factor that could facilitate mutualism persistence is

coevolution among partners (e.g. Ref. [53]), especially if it

is rapid and allows tracking of the changes between

partners (Figure 1a). Most of the research in this area

has used theoretical network approaches to address the

debate about the strength of coevolution in large

mutualistic networks. Because of indirect effects,

multi-species mutualisms may require more time than

pairwise interactions to reach coevolutionary equilibrium

after disturbances [54�]. In contrast, other work has shown

that coevolution can buffer the negative effects of habitat

destruction and climate change on mutualistic networks

[39��]. Observational approaches such as tracking changes

in trait values of interacting mutualists before and after a

disturbance would be a first step in understanding the role

of coevolution in mutualisms experiencing the effects of

global change. Short-term evolution experiments using

microbes or insects would also provide a powerful

approach to study the role of coevolution in buffering

mutualisms against disturbance.

Conclusions
In summary, the findings of this review suggests that we

may not identify general patterns in how insect mutual-

isms response to global environmental change because

these mutualisms are extremely variable. We advocate

returning to a natural history approach that considers the

set of features that make each mutualism unique, as well

as examining how these interactions (co)evolve in chang-

ing environments. To push the field forward, we need to

compare systems that vary in specialization and depen-

dency and directly measure the benefits and costs

involved in mutualisms experiencing different distur-

bance regimes. There is also a strong need to understand

coevolutionary dynamics in mutualistic systems because

global change is likely to place strong selection on mutu-

alist partners. By doing so, these studies will allow us to

integrate community and evolutionary ecology to advance

our understanding of mutualism and global change.
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